Section A: 18 Short Multiple Choice (1 mark each = 18 marks)
Section B: 5 Long Answer Multiple Choice (4 marks each = 20 marks) \rightarrow Must show workings.
Section C: 4 Long Answer Questions (30 marks) \rightarrow Must show workings.

Quadratic Formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Unit 1: Pre-Calculus

1. Function Operations:

Sum	$f(x)+g(x)$
Difference	$f(x)-g(x)$
Product	$f(x) \times g(x)$
Quotient	$\frac{f(x)}{g(x)}$

Non-permissible values \rightarrow produce vertical asymptotes or points of discontinuity
2. Composite Functions $f(g(x))$ and finding its domain

Unit 2: Limits and Continuity

1. Limit Definition and Notation

$\lim _{x \rightarrow a} f(x)=L \rightarrow$ We can make $f(x)$ as close to L by making x close to a on either side but not equal to a.

2. Left and Right Hand Limits using Piece-wise Function

$\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$

3. Evaluate Limits of a Polynomial Function

$\lim _{x \rightarrow a} f(x)=f(a) \rightarrow$ simply substitute in the value of x being approached.

4. Evaluate Limits of a Rational Function

(using substitution)
A. $\frac{\mathrm{O}}{\mathrm{O}} \rightarrow$ Indeterminate Form

Simplify the function by factoring, using conjugates, obtain the lowest common denominator or expand the function.
B. $\quad \frac{c}{\mathbf{O}} \rightarrow$ Infinite Limit $\boldsymbol{x}=\boldsymbol{a}$ Is a vertical asymptote
$\lim _{x \rightarrow a} f(x)= \pm \infty$

5. Limits using absolute Value

\rightarrow evaluate using left and right hand limits since the absolute function is a piecewise function.

6. Formula for factoring a sum/Difference of cubes:

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

7. Limits at Infinity

$$
\lim _{x \rightarrow \pm \infty} f(x)=b \longrightarrow \mathrm{y}=\mathrm{b} \text { is a horizontal asymptote }
$$

\rightarrow divide the numerator and denominator by the highest power of x appearing in the denominator

$$
\lim _{x \rightarrow \pm \infty} \frac{1}{x^{n}}=0
$$

8. Oblique Asymptotes

\rightarrow when the degree of numerator is 1 more than the degree of the denominator
\rightarrow the equation of the oblique asymptote is the quotient resulting from synthetic division.

9. Definition of Continuity

(i) $\quad f(a)$ is defined
\rightarrow three step process to prove continuity:
(ii) $\lim _{x \rightarrow a} f(x)$ exists
(iii) $\quad f(a)=\lim _{x \rightarrow a} f(x)$

10. Types of Discontinuity

A. Removable Discontinuity
B. Non-Removable Discontinuity (jump and infinite)
\rightarrow To prove discontinuities, test points where the function is changing for a piecewise function or the non-permissible values of the rational function.
\rightarrow Removable discontinuity: limit exists but $f(a) \neq \lim _{x \rightarrow a} f(x)$
\rightarrow Non-Removable discontinuity: limit does not exist $\lim _{x \rightarrow a^{+}} f(x) \neq \lim _{x \rightarrow a^{-}} f(x)$

Unit 3: Rational Functions

1. Graphing a rational function

Identify the following:
a. x and y-intercepts
b. non-permissible values
c. vertical asymptotes
d. points of discontinuity
e. horizontal asymptotes
f. oblique asymptote
g. check if the function crosses the horizontal asymptote
h. sign diagram
i. graph (use a few test points)

Note:
-When a graph has a hole in it (or a point of discontinuity), the numerator and denominator of the original function contains a common factor
-A factor of only the denominator results in a vertical asymptote
-A factor of only the numerator results in an x-intercept
-Test points on the sign diagram tells us where the function is positive or negative for different intervals of x.
-Horizontal asymptotes describe the end behavior of the function

- Vertical asymptotes describe the behavior of the function near a point.

Unit 4: Derivatives

1. Derivative

\rightarrow instantaneous rate of change
\rightarrow Slope of a tangent line

2. Definition of the Derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

3. Equation of a tangent line at $x=a$
$\rightarrow y-f(a)=f^{\prime}(a)(x-a)$
4. Equation of a normal line at $x=a$

> Tangent line and normal line are perpendicular to each other. Their slopes are negative reciprocals of each other.

$$
\rightarrow y-f(a)=-\frac{1}{f^{\prime}(a)}(x-a)
$$

5. Derivative Rules

\rightarrow constant, power, product, quotient

6. Chain Rule

\rightarrow used for composite functions

7. Test for differentiability:

(i) $f(a)$ exist
(ii) $f^{\prime}(a)=\frac{f(x)-f(a)}{x-a}$ must be defined

8. Higher order Derivatives

$f(x) \rightarrow$ position function
$f^{\prime}(x) \rightarrow$ velocity function
$f^{\prime \prime}(x) \rightarrow$ acceleration function

9. Implicit Differentiation

\rightarrow determine the derivative of an implicit relation

