\qquad

Review Sheet: Applications of Derivatives

1. Given the following function $f(x)=4-3 x^{2}+x^{3}$, answer the following questions:
(a) Determine the x and y-intercepts of the graph of $f(x)$, if any.
(b) Determine the intervals on which $f(x)$ is increasing or decreasing and classify any relative (local) extrema.
(c) Determine the intervals on which $f(x)$ is concave upward or concave downward and identify any inflection points.
(d) Sketch the graph of $f(x)$. Label any inflection points and extrema.

2. Given the following function with the indicated derivatives, answer the following questions:

$$
f(x)=\frac{x^{2}+1}{x^{2}-1} ; \quad f^{\prime}(x)=\frac{-4 x}{\left(x^{2}-1\right)^{2}} ; \quad f^{\prime \prime}(x)=\frac{4\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}
$$

(a) Determine the vertical and horizontal asymptotes of $f(x)$, if any.
(b) Determine the x and y-intercepts of the graph of $f(x)$, if any.
(c) Determine the intervals on which $f(x)$ is increasing or decreasing and classify any relative (local) extrema.
(d) Determine the intervals on which $f(x)$ is concave upward or concave downward and identify any inflection points.
(e) Sketch the graph of $f(x)$. Label any inflection points and extrema.

3. A snowball is melting such that the radius is decreasing by $0.15 \mathrm{~cm} / \mathrm{min}$. How fast is the volume changing when the radius is 6 cm ? $\left[V=\frac{4}{3} \pi r^{3}\right]$
4. Edwin and Stella part ways at a crossroads. Stella moodily runs to the west, moving at a constant rate of 2 metres per second. Edwin glumly watches her vanish into the distance for 5 minutes before he turns to the north and heads in that direction at a constant rate of 1.5 metres per second. Determine how quickly the distance between them is increasing 15 minutes after Stella's departure.
5. Two cars start out 500 miles apart. Car A is to the west of Car B and starts driving to the east (i.e. towards Car B) at 35 mph and at the same time Car B starts driving south at 50 mph . After 3 hours of driving at what rate is the distance between the two cars changing? Is it increasing or decreasing?
6. Sand falling from a chute forms a conical pile whose height is always equal to $4 / 3$ of the radius of the base. How fast is the volume changing when the radius of the base is 36 inches and is increasing at a rate of $3 \mathrm{in} / \mathrm{min}$? $\left[V=\frac{1}{3} \pi r^{2} h\right]$
7. An ice sculpture in the shape of an inverted cone is melting such that its height shrinks at a rate of $\frac{1}{3}$ metres per hour but its radius remains constant. How fast is the cone's voulume decreasing when its height is 1 metre and its volume is 3π cubic metres?
8. A box with a square base and open top is to be made with $1200 \mathrm{~cm}^{2}$ of cardboard. Determine the dimensions which will give the largest possible volume of the box.
9. We want to construct a box whose base length is 3 times the base width. The material used to build the top and bottom cost $\$ 10 / \mathrm{ft}^{2}$ and the material used to build the sides cost $\$ 6 / \mathrm{ft}^{2}$. If the box must have a volume of $50 \mathrm{ft}^{3}$, determine the dimensions that will minimize the cost to build the box.
10. A printer needs to make a poster that will have a total area of $200 \mathrm{in}^{2}$ and will have 1 inch margins on the sides, a 2 inch margin on the top and a 1.5 inch margin on the bottom. What dimensions will give the largest printed area (the area of the poster with the margins taken out)?

n this figure y represents the distance driven by Car B and x represents the distance separating Car A from Car B 's initial position and z represents the distance separating the two cars. tfter 3 hours driving time with have the following values of x and y.

$$
x=500-35(3)=395 \quad y=50(3)=150
$$

Ne can use the Pythagorean theorem to find z at this time as follows,

$$
z^{2}=395^{2}+150^{2}=178525 \quad \Rightarrow \quad z=\sqrt{178525}=422.5222
$$

Now, to answer this question we will need to determine z^{t} given that $x^{t}=-35$ and $y^{\prime}=50$. Do you agree with the signs on the two given rates? Remember that a rate is negative if the [uantity is decreasing and positive if the quantity is increasing.

Ne can again use the Pythagorean theorem here. First, write it down and the remember that x, y, and z are all changing with time and so differentiate the equation using Implicit Jifferentiation.

$$
z^{2}=x^{2}+y^{2} \quad \Rightarrow \quad 2 z z^{t}=2 x x^{t}+2 y y^{t}
$$

'inally, all we need to do is cancel a two from everything, plug in for the known quantities and solve for z '.
$z^{\prime}(422.5222)=(395)(-35)+(150)(50) \quad \Rightarrow \quad z^{t}=\frac{-6325}{422.5222}=-14.9696$
jo, after three hours the distance between them is decreasing at a rate of 14.9696 mph .

Here is a sketch of the poster and we can see that once we've taken the margins into account the width of the printed area is $w-2$ and the height of the printer area is $h-3.5$.

Here are the equations that we'll be working with

$$
\text { Maximize : } A=(w-2)(h-3.5)
$$

$$
\text { Constraint : } 200=w h
$$

Solving the constraint for h and plugging into the equation for the printed area gives,

The first and second derivatives are,

$$
A(w)=(w-2)\left(\frac{200}{w}-3.5\right)=207-3.5 w-\frac{400}{w}
$$

From the first derivative we hawe the following three critical $\begin{gathered}A^{t}(w)=-3.5+\frac{400}{A^{\prime \prime}}(w)=-\frac{800}{w^{3}}\end{gathered}$

