1. Use the graph of y = f(x) below to determine each of the following. Label the limits as ∞ or $-\infty$ where appropriate. If the limit does not exist or the value of the function is undefined, indicate this.

(a)
$$f(3) =$$

(b)
$$\lim_{x \to 3^{-}} f(x) =$$

(c)
$$\lim_{x \to 3^+} f(x) =$$

(d)
$$\lim_{x \to 3} f(x) =$$

(e)
$$f(0) =$$

(f)
$$\lim_{x \to 0^{-}} f(x) =$$

(g)
$$\lim_{x \to 0^+} f(x) =$$

(h)
$$\lim_{x \to 0} f(x) =$$

(i)
$$f(-1) =$$

(j)
$$\lim_{x \to 0^{-}} f(x) =$$

(k)
$$\lim_{x \to -1^+} f(x) =$$

(I)
$$\lim_{x \to -1} f(x) =$$

(m)
$$f(-2) =$$

(n)
$$\lim_{x \to -2^+} f(x) =$$

(o)
$$\lim_{x \to -2^{-}} f(x) =$$

(p)
$$\lim_{x \to -2} f(x) =$$

2. Graph the piecewise $f(x) = \begin{cases} -x, & x < -2 \\ \frac{1}{2}x^2 - 1, & -2 \le x < 2 \\ -x + 3, & x > 2 \end{cases}$

(b) Use the graph you drew in part (a) to determine each of the following. Label the limits as ∞ or $-\infty$ where appropriate. If the limit does not exist or the value of the function is undefined, indicate this.

(i)
$$f(-2) =$$

(ii)
$$\lim_{x \to -2^{-}} f(x) =$$

(iii)
$$\lim_{x \to -2^+} f(x) =$$

(iv)
$$\lim_{x \to -2} f(x) =$$

(v)
$$f(2) =$$

(vi)
$$\lim_{x\to 2^-} f(x) =$$

(vii)
$$\lim_{x \to 2^+} f(x) =$$

(viii)
$$\lim_{x\to 2} f(x) =$$

(ix)
$$\lim_{x\to -1} f(x) =$$

