1. Let $f(x)$ be given as $f(x)= \begin{cases}2 x^{2}+x+2, & x \geq 1 \\ x^{2}+5 x-1, & x<1\end{cases}$

Determine whether $f(x)$ is continuous at $x=1$.
2. Given $f(x)= \begin{cases}x+1 & x \leq 1 \\ \frac{x-2}{x^{2}-2 x} & x>1\end{cases}$

Use the definition of continuity to determine all points at which $f(x)$ is not continuous. Classify any discontinuities as removable or non-removable.
3. Given the function $f(x)= \begin{cases}\frac{x-3}{x^{2}-1}, & \text { for } x<0 \\ \frac{x^{2}+2 x-8}{x-2}, & \text { for } 0 \leq x<4 \\ \frac{2 x}{x-3}, & \text { for } x \geq 4\end{cases}$

Use the definition of continuity to determine all points at which $f(x)$ is not continuous. Classify any discontinuities as removable or non-removable.
4. Let $f(x)= \begin{cases}k x+2 k, & \text { for } x<-1 \\ k^{2}, & \text { for } x=-1 \\ k x, & \text { for } x>-1\end{cases}$ Find all values of k for which $f(x)$ is continuous at $x=-1$.
5. Given the function $f(x)= \begin{cases}\frac{x^{2}+(k-3) x-3 k}{x^{2}-(k+3) x+3 k}, & x \neq 3 \\ k x-k+1, & x=3\end{cases}$

Use the definition of continuity to determine all values of the constant k for which $f(x)$ is continuous at $x=3$.

